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Example(math)

Consider the following simplest problem.
Noisy measurements,y1,y2,....,yk. an unknown constant x

Ye =T + v (1)

and vg,k = 1,2, ...(independent and identically distributed noises)
A simple common sense

1
T = — Z Yivroe estimate of x after k measurements  (2)
is an optimal estimate that converges to the true x as k — oo
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Now we can rewrite Eq.(2) as

The best estimate of x after k measurements is the best estimate
of x after k-1 measurements plus a correction term yp — Zx_1

The weighting factor is % initially, we don’t think our estimates
are good when k is small. We must pay more attention to the
correction term. As k becomes large, so does the confidence in our
estimate. Thus we pay less attention to the correction term.

Label the weighting factor % as Py, the recursive equation

Py =Py — Po1(Pecr + 1)1 Py (Ho 1963) (4)
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Example (physic)

A train(or car) is moving along a railway line.

The best possible estimate of the location of the train. Informa-
tion is available from two sources:
1) predictions based on the last known position and velocity of the
train
2) measurements from a radio ranging system deployed at the track
side.

Measurement (Noisy)

T
0 Prediction (Estimate)

[FIG1] This figure shows the one-dimensional system under consideration.
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The initial state of the system(t = 0s) is known to a reasonable
accuracy, as shown in Figure 2.

[FIG2] The initial knowledge of the system at time t = 0. The red Gaussian distribution represents the pdf providing the initial
confidence in the estimate of the position of the train. The arrow pointing to the right represents the known initial velocity of
the train.




[FIG3] Here, the prediction of the location of the train at time t = 1 and the level of uncertainty in that prediction is show
confidence in the knowledge of the position of the train has decreased, as we are not certain if the train has undergone

accelerations or decelerations in the intervening period from t=0to t=1.

The accuracy of out position estimate compared to ¢t = 0s, due to
the uncertainty associated with any process noise from accelerations
or decelerations undertaken from ¢t =0 to t = 1.
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At t = 1, we make a measurement ol the location otthe traln
using the radio positioning system(% & ® € 4z & #4&), and this is
represented by the blue Gaussian pdf in Figure 4.

Measurement (Noisy)

Prediction (Estimate)

[FIG4] Shows the measurement of the location of the train at time t = 1 and the level of uncertainty in that noisy measurement,
represented by the blue Gaussian pdf. The combined knowledge of this system is provided by multiplying these two pdfs

together.

The best estimate we can make of the location of the train is
provided by combining our knowledge from the prediction and the
measurement. This is achieved by multiplying the two correspond-

ing pdfs together.
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Measurement (Moisy)

Prediction (Estimate)

[FIGS] Shows the new pdf (green) generated by multiplying the pdfs associated with the prediction and measurement of the
train's location at time ¢ = 1. This new pdf provides the best estimate of the location of the train, by fusing the data from the
prediction and the measurement.

The product of two Gaussian functions is another (Gaussian
function.This is the key to the elegant recursive properties of the
Kalman filter.




mathematically

The red Gaussian function(prediction)
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The green Gaussian function(measurement and prediction)
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X(k) = ®(k,k—1)-X(k—1)+T(kk—1)-wk—1) (9)

y(k) =h(k) - X(k) + v(k) (10)
Kalman Filtering

@ (klk = 1) = @k, — )ik — 1]k —1)|

Pup(klk —1) = ®(k, k — Dp(k — 1|k — 1)®T (k, k — 1)
+T(k, k—1)Qu(k — DI (k, k—1)
K (k) = Pay(klk — 1) P! (k|k — 1)

@ (klk) = @ (k[k — 1) + K (k)[y(k) — g(k]k — 1)]|
B(k[k) = [T = K (k) (k)] Pro (K[ — 1)
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