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The origin of the Kalman Filtering
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Example(math)

Consider the following simplest problem.
Noisy measurements,y1,y2,...,yk. an unknown constant x

yk = x+ vk (1)

and vk,k = 1, 2, ...(independent and identically distributed noises)
A simple common sense

x̂k =
1

k

k∑
i=1

yi · · · · · estimate of x after k measurements (2)

is an optimal estimate that converges to the true x as k →∞
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Now we can rewrite Eq.(2) as

x̂k =
1

k

k−1∑
i=1

yi +
1

k
yk =

k − 1

k

1

k − 1

k−1∑
i=1

+
1

k
yk = x̂k−1 +

1

k
(yk− x̂k−1)

(3)
The best estimate of x after k measurements is the best estimate

of x after k-1 measurements plus a correction term yk − x̂k−1

The weighting factor is 1
k . initially, we don’t think our estimates

are good when k is small. We must pay more attention to the
correction term. As k becomes large, so does the confidence in our
estimate. Thus we pay less attention to the correction term.

Label the weighting factor 1
k as Pk, the recursive equation

Pk = Pk−1 − Pk−1(Pk−1 + 1)−1Pk−1 (Ho 1963) (4)
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Example (physic)

A train(or car) is moving along a railway line.
The best possible estimate of the location of the train. Informa-

tion is available from two sources:
1) predictions based on the last known position and velocity of the
train
2) measurements from a radio ranging system deployed at the track
side.

5 of 12



The initial state of the system(t = 0s) is known to a reasonable
accuracy, as shown in Figure 2.
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A prediction of the new position of the train(t = 1s)

The accuracy of out position estimate compared to t = 0s, due to
the uncertainty associated with any process noise from accelerations
or decelerations undertaken from t = 0 to t = 1.
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At t = 1, we make a measurement of the location of the train
using the radio positioning system(Ã�>½ XÚ), and this is
represented by the blue Gaussian pdf in Figure 4.

The best estimate we can make of the location of the train is
provided by combining our knowledge from the prediction and the
measurement. This is achieved by multiplying the two correspond-
ing pdfs together.
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The product of two Gaussian functions is another Gaussian
function.This is the key to the elegant recursive properties of the
Kalman filter.
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mathematically

The red Gaussian function(prediction)

y1(r;µ1, σ1) =
1√

2πσ21
e
− (r−µ1)

2

2σ21 (5)

The blue Gaussian function(measurement)

y2(r;µ2, σ2) =
1√

2πσ22
e
− (r−µ2)

2

2σ22 (6)

The green Gaussian function(measurement and prediction)

yfused(r;µ1, σ1, µ2, σ2) =
1√

2πσ21
e
− (r−µ1)

2

2σ21 × 1√
2πσ22

e
− (r−µ2)

2

2σ22

=
1

2π
√
σ21σ

2
2

e
−(

(r−µ1)
2

2σ21
+

(r−µ2)
2

2σ22
)

(7)
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yfused(r;µfused, σfused) =
1√

2πσ2fused

e
−

(r−µfused)
2

2σ2
fused (8)

where
µfused =

µ1σ2
2+µ2σ

2
1

σ2
1+σ

2
2

= µ1 +
σ2
1(µ2−µ1)
σ2
1+σ

2
2

and
σ2fused =

σ2
1σ

2
2

σ2
1+σ

2
2

= σ21 −
σ4
1

σ2
1+σ

2
2

substituting K =
σ2
1

σ2
1+σ

2
2

µfused = µ1 +K(µ2 − µ1) and σ2fused = σ21 −Kσ21
K,the kalman gain �Oþ��Óo���'­
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X(k) = Φ(k, k − 1) ·X(k − 1) + Γ(k, k − 1) · ω(k − 1) (9)

y(k) = h(k) ·X(k) + ν(k) (10)

Kalman Filtering

x̂(k|k − 1) = Φ(k, k − 1)x̂(k − 1|k − 1)

Pxx(k|k − 1) = Φ(k, k − 1)p̂(k − 1|k − 1)ΦT (k, k − 1)

+ Γ(k, k − 1)Qω(k − 1)ΓT (k, k − 1)

K(k) = Pxy(k|k − 1)P−1
yy (k|k − 1)

x̂(k|k) = x̂(k|k − 1) +K(k)[y(k)− ŷ(k|k − 1)]

p̂(k|k) = [I −K(k)h(k)]Pxx(k|k − 1)
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